If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x=25=0
We move all terms to the left:
x^2-10x-(25)=0
a = 1; b = -10; c = -25;
Δ = b2-4ac
Δ = -102-4·1·(-25)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{2}}{2*1}=\frac{10-10\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{2}}{2*1}=\frac{10+10\sqrt{2}}{2} $
| 5-(2x+7)=26-6x | | 30/9+3t=10 | | (2/3)x+5=27 | | 2-x/2=11 | | 7x.3=13 | | 6x^2+38x+60=0 | | -3y+6=-6-12 | | 3s+73/9=0 | | X4-4x2+3=0 | | 101/4=3/4-2n | | 20x3-2x=0 | | 3m^+6m+3=0 | | 22=6p-8 | | 39/9+3t=10 | | -10=-2t+-4 | | 3h-6=72 | | y+15+63+2y=180 | | c/2+3=8 | | -(7x-2+12)+(-5x-3x+4)=-(-x+7-6x-4-7) | | 0=-1.339x^2+5.168x-4.983 | | b-4=15 | | -3+4x+3+4+6x+1=43 | | 1-2x+4=14 | | 1/x=30 | | X4+3x3-5x2+-1=0 | | 35x^2+55x-30=0 | | 1/x=0.025 | | -4a-8=10a+4 | | -10x+60=150 | | (2x−1)^1/3−3=0 | | 2x+2(x+4)=-8 | | (2x−1)13−3=0 |